Ubuntu 20.04 / 18.04 環境で eddy_cuda10.2 (in FSL 6.0.5.x), PyTorch, Tensorflow 2 を使えるようにCUDA 10.2, 11.0, 11.5をセットアップする方法

注意(16 Apr 2023): FSL 6.0.6 から、CUDA 11以降でもeddy_cuda10.2が動くようになりました。したがって、以下の内容はもう古くなっています。新しい記事をご確認ください。

私のメインマシンは Lin4Neuro 18.04 ですが、そろそろ Lin4Neuro 20.04 への移行を考えています。

今、実験機には NVIDIA GeForce RTX 2070 が備え付けられています。
これを使って、FSL 6.0.5 の eddy をGPUが使えるように設定し、なおかつ、Tensorflow, Pytorch といった Deep Learning のフレームワークも使えるようにしたいと思います。

FSL 6.0.5 にはデフォルトで CUDA 10.2 に対応した eddy_cuda10.2 が配布されています。なので、CUDA 10.2を入れることにします。

なお、これは Ubuntu 18.04 でも全く問題なくできることがわかりましたので、タイトルを変更しました。

続きを読む

Ubuntu 20.04 の mini.iso

Ubuntu 20.04 の mini.iso はかなり隠れたところにあります。
こちらから入手できます。

http://archive.ubuntu.com/ubuntu/dists/focal/main/installer-amd64/current/legacy-images/netboot/

日本のミラーサイトはこちら。
http://jp.archive.ubuntu.com/ubuntu/dists/focal/main/installer-amd64/current/legacy-images/netboot/

いつも探すので備忘録として書いておきます。

Anacondaに頼らない、pipとvenvを用いたPython環境の構築

最近、Pythonに触れることが多くなってきました。
その中で、環境構築についていろいろ学んできました。

Pythonの参考書の多くは”Anacondaで環境構築しましょう”と書いてあります。
しかし、Anacondaはセットアップファイルだけで4GBもあります。
また、自分のシステムに既に入っているPythonとの相互関係も最初の頃はよくわからなくなります。

Anacondaを横においておくと、Pythonには、パッケージマネージャーとして、”pip” というものがあります。
これも若干クセがあるので、いくつかおさえておくべきことがあります。

さらに、Pythonは”venv”というパッケージを使うことで、仮想環境を簡単に構築できます。
このvenvについて把握すると、Anacondaなどのことも理解しやすくなります。

ということで、私なりに理解したことをここでまとめていきたいと思います。
なお、ここではすべてPython3環境を意識していきます。pipはmacOSやUbuntuでは全部Python3になっています。DebianではPython2のようですが、最近、Debianを使っていないのでよくわかりません。(man pip に書いてある情報から記載しただけです)

現時点での私のおすすめは、
「基本、–userをつけてpipでインストール。試験的に試したかったらvenvで仮想環境内で構築」です。

概要は以下になります。

  1. pip
    1.1 どのpipを使っているかの確認
    1.2 システムへのインストールと個別ユーザーへのインストール
  2. venv
    2.1 仮想環境の構築
    2.2 仮想環境の有効化
    2.3 仮想環境の無効化

続きを読む

macOSでのSPM12のコンパイル方法

ある方から、Apple M1のmacでSPMを起動しようとするとspm_check_installation(‘basic’)でエラーが出て起動しないという相談を受けました。

コンパイルしたら問題は解決しました。コンパイル方法を共有します。

ただし、その後、SPMのMLでこのディスカッションに乗ってみたところ、コンパイルは不要だよということも教えていただきました。なので、コンパイルに挑戦してみたい人向けと思ってください。(普通は不要です)

続きを読む

格安パルスオキシメーターは使えるのか?

久しぶりに脳画像以外のネタを。

COVID-19が猛威をふるう中、動脈血酸素飽和度 (SpO2) を測定できるパルスオキシメーターの需要が増えています。
万が一自宅療養になる時などにそなえてパルスオキシメーターが家にあるといいなと思いましたが、
一般的に購入できる1万円未満のパルスオキシメーターのレビューを見ると、みなさん、様々なことを書いていて、判断に困るなぁと思いました。

そこで、実際どうなのかと思い、自ら人柱になって、自腹で購入して実験してみました。

続きを読む

CONNチュートリアル (20.b対応): SETUP – Covariates (2nd-level)

前処理のQAで今回準備したサンプルデータでは、Subject 16は解析に不適ということがわかりました。なので、これを省きたいと思いますが、その前に準備している Covariates を登録しておきます。(そうでないと Covariates を入れてある subjects.txt を編集し直さないといけないからです。)

続きを読む

CONNチュートリアル (20.b対応): ワーキングディレクトリの設定

脳画像解析を行う際には、「ワーキングディレクトリ」を意識することがとても大切になります。なぜならば、ワーキングディレクトリの中に画像データが保存されていくからです。CONNも例外ではありません。

そして、忘れられがちですが、Matlabでまずワーキングディレクトリに移動してからCONNやSPMを起動すると、ファイルの選択などが非常に容易になります。

今は、conn_practice.zip を展開してできた conn_practice をワーキングディレクトリとして設定したいと思います。

続きを読む

CONNチュートリアル (20.b対応): 必要なデータ

CONNのために必要なMRIデータ

CONNを使うために必要なデータは、3次元T1強調画像と安静時脳機能画像です。安静時脳機能画像は、4次元画像の方がとりまわしがしやすいです。3次元fMRIデータを4次元fMRIデータに変換する方法は、こちらの記事にまとめましたので、そちらをご参照ください。

続きを読む