LinuxやmacOSでPythonの仮想環境を構築する方法

過去に、Anacondaに頼らない、pipとvenvを用いたPython環境の構築 という記事を書きました。今回、改めて、Pythonの仮想環境について理解が深まったので書きたいと思います。

仮想環境を構築したい背景

  • Python は、ひとつのシステムに様々なバージョンが存在しえます。macOSでの場合を、macOS の Python事情を理解するに解説しました。LinuxやWindowsも同じで複数のバージョンが存在しえます。
  • また、LinuxやmacOSにおいて、Pythonは、システムの重要なところを担っていたりします。Ubuntuであれば、 dpkg -l | grep python3 とすると、どれだけ多くの Python3に関連したパッケージがシステムにインストールされているかを確認することができます。

  • このような状況において、システムのPythonに追加でパッケージを入れていって、もし不具合が起きた場合、システムそのものが不安定になる可能性があります。

  • Pythonの仮想環境を使うと、システムの中に、独立したPythonの環境を構築することができます。「独立している」というのは、システムに一切影響を与えないということを意味します。不要になったらばっさり削除しても一切問題ありません。

  • そこで、以下で、仮想環境の構築の仕方を解説します

続きを読む

過去のPhilipsのfMRIデータをdcm2niixで変換しようとした時に4次元データにならない問題の解決法

ある施設のrs-fMRIのDICOMデータをNiftiに変換しようとした時に、以下のようになってしまい、4次元データができませんでした。

sub1_+rsfMRI_201.nii
sub1_+rsfMRI_201_t10000.nii
sub1_+rsfMRI_201_t100000.nii
sub1_+rsfMRI_201_t102500.nii
sub1_+rsfMRI_201_t105000.nii
sub1_+rsfMRI_201_t107500.nii
sub1_+rsfMRI_201_t110000.nii
sub1_+rsfMRI_201_t112500.nii
sub1_+rsfMRI_201_t115000.nii
sub1_+rsfMRI_201_t117500.nii
sub1_+rsfMRI_201_t120000.nii
sub1_+rsfMRI_201_t122500.nii
sub1_+rsfMRI_201_t12500.nii
...

ポイントは、ファイル名の後ろに tの後に数字がつくことです。

この原因を探っていたところ、dcm2niixのGitHubページを見つけました。
https://github.com/rordenlab/dcm2niix/issues/428

ここで開発者のChris Rorden教授が以下のように述べています。

your files have a bogus value for cardiac trigger time (0018,1060). This is a limitation of your images, not dcm2niix. You should work with your Philips Research Collaboration manager to fix your scanner. For archival-quality data you could purge the invalid tags from your images, e.g. gdcmanon –dumb –remove 0018,1060 -i … -o …

Cardiac Trigger Timeというタグに値が入ってしまっていることで、dcm2niixはこれを別々のものと認識してひとつにしないようです。過去に撮像したデータの場合、0018,1060を削除するのは一手ではないかとおっしゃっています。実際に確認したところ、そのタグが入っていました。

そこで、このタグを削除する以下のようなPythonスクリプトを書いてみました。pydicomが入っていれば動くはずです。
こちらから手に入れられます。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Script to remove trigger time from Philips fMRI
# source: https://github.com/rordenlab/dcm2niix/issues/428
# 14 Oct 2023 K. Nemoto

import sys, os, time, argparse
import pydicom

__version__ = '20231004'

__desc__ = '''
Remove Trigger Time (0018,1060) from Philips rsfMRI
'''
__epilog__ = '''
examples:
  dcm_rm_trigger_time.py DICOM_DIR1 DICOM_DIR2 ...
'''

def remove_triggertime(src_dir):
    # modify files
    for root, dirs, files in os.walk(src_dir):
        for file in files:
            try:
                src_file = os.path.join(root, file)
                ds = pydicom.dcmread(src_file)
                pid = src_dir.replace('/','')
                del ds[0x0018, 0x1060]
                ds.save_as(src_file)
            except:
                pass

if __name__ == '__main__':
    start_time = time.time()
    parser = argparse.ArgumentParser(description=__desc__, epilog=__epilog__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument('dirs', metavar='DICOM_DIR', help='DICOM directories.', nargs='+')

    err = 0
    try:
        args = parser.parse_args()
        for dicom_dir in args.dirs:  # Loop through all the provided directories
            print(f'remove dicom tag (0018,1060) from {dicom_dir}')
            remove_triggertime(dicom_dir)
        print("execution time: %.2f second." % (time.time() - start_time))
    except Exception as e:
        print("%s: error: %s" % (__file__, str(e)))
        err = 1

    sys.exit(err)

これは、

dcm_rm_triggertime.py DICOMフォルダ

とすることで、そのフォルダ内のtrigger timeタグを削除します。

この処理をした後のDICOMを使って dcm2niix を行ったところ、問題なく変換されました。

困っている人がいると思うので共有しておきます。

【AMICO】AMICOを用いた神経突起イメージング: NODDI



1. 目的
2. 準備
2.1. インストール
2.2. 使用データ
2.3. 前処理
3. 神経突起イメージング(NODDI)
3.1. AMICOのセットアップ
3.2. データの読み込み
3.3. 応答関数(response function)の計算
3.4. モデルフィッティング
3.5. 結果


1. 目的

  • AMICOを用いた神経突起イメージング: NODDI

2. 準備

2.1. インストール

Pythonを使って、AMICOを用いた神経突起イメージング(NODDI)をするために、以下のPythonパッケージをインストールする。

pip3 install dmri-amico

2.2. 使用データ

データを次のフォルダ構造で用意する。

Study/
└── Subject
    ├── DWI.nii.gz  # 拡散MRI
    ├── DWI_mask.nii.gz  # 拡散MRIマスク画像
    ├── bvals  # b-values
    └── bvecs  # b-vectors

2.3. 前処理

NODDI前に、拡散MRIの前処理をする。

  • 拡散MRIのノイズ除去(Software: MRtrix, DIPY)
  • ギブズのリンギングアーチファクト(Gibbs ringing)の除去(Software: MRtrix, DIPY)
  • 拡散MRIのバイアス(信号ムラ)補正(Software: MRtrix)
  • 拡散MRIの前処理 ~歪み・頭の動き・渦電流の補正(Software: FSL, MRtrix)

3. 神経突起イメージング(NODDI)

Pythonで以下のコマンドを実行。

3.1. AMICOのセットアップ

今回使用するファイル等の変数設定をする。

STUDY_DIR='Study'
SUBJECT_DIR='Subject'
DWI_FILE = 'DWI.nii.gz'
DWIMASK_FILE = 'DWI_mask.nii.gz'
BVALS_FILE = 'bvals'
BVECS_FILE = 'bvecs'

次に、使用するamicoパッケージのをインポートし、セットアップと初期化をする。

import amico
amico.core.setup()

3.2. データの読み込み

AMICOを実行するために、Study/Subjectフォルダ(PATH)を指定する。

ae = amico.Evaluation(STUDY_DIR, SUBJECT_DIR)

MPG軸情報(bvals/bvecs)の情報が入ったschemeファイルを生成する。

amico.util.fsl2scheme("{}/{}/{}".format(STUDY_DIR,SUBJECT_DIR,BVALS_FILE), "{}/{}/{}".format(STUDY_DIR,SUBJECT_DIR,BVECS_FILE),schemeFilename = "{}/{}/NODDI_protocol.scheme".format(STUDY_DIR,SUBJECT_DIR))
-> Writing scheme file to [ Study/Subject/NODDI_protocol.scheme ]
'Study/Subject/NODDI_protocol.scheme'

画像を読み込む。

ae.load_data(dwi_filename = DWI_FILE, scheme_filename = 'NODDI_protocol.scheme', mask_filename = DWIMASK_FILE, b0_thr = 0)
-> Loading data:
    * DWI signal
        - dim    = 130 x 130 x 82 x 129
        - pixdim = 1.769 x 1.769 x 1.800
    * Acquisition scheme
        - 129 samples, 2 shells
        - 1 @ b=0 , 64 @ b=1000.0 , 64 @ b=2000.0 
    * Binary mask
        - dim    = 130 x 130 x 82
        - pixdim = 1.769 x 1.769 x 1.800
        - voxels = 282878
   [ 4.4 seconds ]

-> Preprocessing:
    * Normalizing to b0... [ min=-3.28,  mean=0.25, max=22.86 ]
    * Keeping all b0 volume(s)
   [ 1.1 seconds ]

3.3. 応答関数(response function)の計算

NODDIモデルを設定して、応答関数(response function)を計算する。計算が完了するとkernelファイルが生成される。

ae.set_model('NODDI')
ae.generate_kernels()
-> Creating LUT for "NODDI" model:
   [==================================================] 100.0% 
   [ 373.3 seconds ]

作成したkernelファイルを読み込む。

ae.load_kernels()
-> Resampling LUT for subject "Subject":
   [==================================================] 100.0% 
   [ 112.8 seconds ]

3.4. モデルフィッティング

NODDIのモデルフィッティングを開始する。

ae.fit()
-> Fitting "NODDI" model to 282878 voxels:
   [==================================================] 100.0% 
   [ 02h 52m 07s ]

最後に、結果をNIfTIフォーマットで保存する。

ae.save_results()
-> Saving output to "AMICO/NODDI/*":
    - configuration  [OK]
    - FIT_dir.nii.gz  [OK]
    - FIT_ICVF.nii.gz  [OK]
    - FIT_OD.nii.gz  [OK]
    - FIT_ISOVF.nii.gz  [OK]
   [ DONE ]

3.5. 結果

結果は、「Study/Subject/AMICO/NODDI/」フォルダにある。

Study/Subject/AMICO/NODDI/
├── FIT_ICVF.nii.gz
├── FIT_ISOVF.nii.gz
├── FIT_OD.nii.gz
├── FIT_dir.nii.gz
└── config.pickle

画像はこちら。

【PyTorch】サンプル① 〜NUMPY〜


1. 目的
2. 前準備
3. 予備知識
4. NumPyのインポート
5. データ
6. 重み付けの初期化
7. 学習
8. データの入力
9. 重み(Weight)の勾配計算
10. 損失の計算
11. 重みの更新
12. 実行
12.1. 1_numpy.py


1. 目的

PyTorchのチュートリアルWarm-up: numpyを参考にNumpyを使って、損失(loss)や重み(weight)の計算をする。

PyTorchの特徴の一つである、テンソルとNumpyの違いを理解するための前準備。

2. 前準備

PyTorchのインストールはこちらから。

初めて、Google Colaboratoryを使いたい方は、こちらをご覧ください。

3. 予備知識

脳神経細胞は、樹上突起(Dendrites)、細胞体(Soma)、核(Nucleus)、軸索(Axon)、軸索終末(Axon Terminals)で構成されます。

(Credit: https://commons.wikimedia.org/wiki/File:Neuron_-_annotated.svg)

この脳神経細胞を数学的にモデルしたのが、パーセプトロンです。
神経樹上から細胞体に向けてやってくる信号(Xn)は、すべてが重要であるわけではありません。
入力される信号の中には、必要なものとそうでないものが混じっていると考えて、各信号に対して重み付け(Wn)をします。
神経樹上からの信号(Xn)は重みづけ(Wn)され、合算(Sum Σ)されます。
その合算した信号(z)が、その神経細胞を活性化させるかどうかを活性化関数(Activation function σ)でモデルします。
最後に、活性化関数からの出力に対して重み付けをして次のパーセプトロンに信号(a)を渡します。

(Credit: https://pythonmachinelearning.pro/perceptrons-the-first-neural-networks/)

今回は、パーセプトロンを用いて、入力される信号(x)からyを予測するケースを考えます。

4. NumPyのインポート

import numpy as np

5. データ

バッチサイズNを64、入力の次元D_inを1000、隠れ層の次元Hを100、出力の次元D_outを10とします。

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

入力(x)と予測したい(y)を乱数で定義します。

# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)

6. 重み付けの初期化

乱数を使って重みを初期化します。

# Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)

7. 学習

学習率を1e-6として、学習回数を500回とします。

learning_rate = 1e-6
for t in range(500):

8. データの入力

入力(x)と重み(w1)を掛け算.dotすることで重み付けをします(h)。
重み付けした値(h)の要素から、np.maximum(h,0)で、0以上のものは残し、0以下のものは0とします。
最後に、重み(w2)を掛け合わせて重み付けします。この値がパーセプトロンの予測値(y_pred)となります。

    # Forward pass: compute predicted y
    h = x.dot(w1)
    h_relu = np.maximum(h, 0)
    y_pred = h_relu.dot(w2)

9. 重み(Weight)の勾配計算

これより先は、パーセプトロンが予測した値(y_pred)と答え(y)を見比べて、正しく答え(y)を予測できるようにパーセプトロンのパラメータを更新していきます。

まず、重み(w1, w2)の勾配(grad_w1, grad_w2)を計算します。

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)

10. 損失の計算

パーセプトロンが予測した値(y_pred)と答え(y)との間の二乗誤差を計算しこれを損失(loss)とします。
np.squreareでy_predとyの差を二乗して、sum()で平均しています。
各学習回数ごとに、学習回数(t)と二乗誤差(loss)を表示します。

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    print(t, loss)

11. 重みの更新

計算した勾配(grad_w1, grad_w2)をもとに、重み(w1, w2)を更新します。

確率勾配降下法(SGD: stochastic gradient descent)は、重みを更新する上でよく使われる最適化アルゴリズムで、以下の式で表されます。

weight = weight - learning_rate * gradient

SGDは、以下のコードで実行できます。

    # Update weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

12. 実行

以下のコードを1_numpy.pyとして保存します。

12.1. 1_numpy.py

import numpy as np

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)

# Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.dot(w1)
    h_relu = np.maximum(h, 0)
    y_pred = h_relu.dot(w2)

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)

    # Update weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

保存ができたら実行しましょう。
左の数字が学習回数、右の数値がパーセプトロンの推定値と実際の答えと二乗誤差です。
学習を重ねるごとに、二乗誤差が小さくなることがわかります。

$ python3 1_numpy.py 
0 33318410.89325847
1 33449484.266180404
2 42189212.89431849
3 51379306.420906566
4 48992878.8013583

...

499 1.529654790074364e-05

【DIPY】DIPYを用いたギブズのリンギングアーチファクト(Gibbs ringing)の除去


1. 目的
2. 準備
2.1. DIPYのインストール
2.2. 使用データ
3. 拡散MRIのノイズ除去
3.1. 必要なパッケージをインポート
3.2. 画像およびMPG軸情報の読み込み
3.3. マスク画像の作成
3.4. ギブズのリンギングアーチファクト除去
3.5. NIfTI形式で保存
3.6. 結果


### 1. 目的

  • DIPYを用いたギブズのリンギングアーチファクト(Gibbs ringing)の除去

2. 準備

2.1. DIPYのインストール

pip3 install dipy

2.2. 使用データ

データを次のフォルダ構造で用意する。

Study/
└── Subject
    ├── DWI.nii.gz  # 拡散MRI
    ├── DWI_mask.nii.gz  # 拡散MRIマスク画像
    ├── bvals  # b-values
    └── bvecs  # b-vectors

3. 拡散MRIのノイズ除去

Pythonで以下のコマンドを実行。

3.1. 必要なパッケージをインポート

from dipy.denoise.gibbs import gibbs_removal
import matplotlib.pyplot as plt
import numpy as np
from dipy.segment.mask import median_otsu
from dipy.io.image import load_nifti, save_nifti
from dipy.io.gradients import read_bvals_bvecs
from dipy.core.gradients import gradient_table

3.2. 画像およびMPG軸情報の読み込み

DWI_FILE = 'DWI.nii.gz'
BVALS_FILE = 'bvals'
BVECS_FILE = 'bvecs'

# Import data
data, affine = load_nifti(DWI_FILE)
bvals, bvecs = read_bvals_bvecs(BVALS_FILE, BVECS_FILE)
gtab = gradient_table(bvals, bvecs)

3.3. マスク画像の作成

median_otsu関数を用いて、b=0画像からマスク画像を生成する。vol_idxには、b0 volumeのvolume indexを渡す。

maskdata, mask = median_otsu(
    data, vol_idx=np.where(bvals == 0)[0])

3.4. ギブズのリンギングアーチファクト除去

gibbs_removal関数を用いて、リンギングアーチファクトを除去する。

data_corrected = gibbs_removal(maskdata)

3.5. NIfTI形式で保存

save_nifti関数で、画像をNIfTI形式で保存する。

save_nifti('DWI_degibbs.nii.gz', data_corrected.astype(np.float32), affine)

3.6. 結果

補正前後の画像は、以下の通り。

Anacondaに頼らない、pipとvenvを用いたPython環境の構築

最近、Pythonに触れることが多くなってきました。
その中で、環境構築についていろいろ学んできました。

Pythonの参考書の多くは”Anacondaで環境構築しましょう”と書いてあります。
しかし、Anacondaはセットアップファイルだけで4GBもあります。
また、自分のシステムに既に入っているPythonとの相互関係も最初の頃はよくわからなくなります。

Anacondaを横においておくと、Pythonには、パッケージマネージャーとして、”pip” というものがあります。
これも若干クセがあるので、いくつかおさえておくべきことがあります。

さらに、Pythonは”venv”というパッケージを使うことで、仮想環境を簡単に構築できます。
このvenvについて把握すると、Anacondaなどのことも理解しやすくなります。

ということで、私なりに理解したことをここでまとめていきたいと思います。
なお、ここではすべてPython3環境を意識していきます。pipはmacOSやUbuntuでは全部Python3になっています。DebianではPython2のようですが、最近、Debianを使っていないのでよくわかりません。(man pip に書いてある情報から記載しただけです)

現時点での私のおすすめは、
「基本、–userをつけてpipでインストール。試験的に試したかったらvenvで仮想環境内で構築」です。

概要は以下になります。

  1. pip
    1.1 どのpipを使っているかの確認
    1.2 システムへのインストールと個別ユーザーへのインストール
  2. venv
    2.1 仮想環境の構築
    2.2 仮想環境の有効化
    2.3 仮想環境の無効化

続きを読む